skip to main content
Language:
Search Limited to: Search Limited to: Resource type Show Results with: Show Results with: Search type Index

How Nanotechnology can Really Improve the Future of Orthopedic Implants and Scaffolds for Bone and Cartilage Defects

Journal of Nanomedicine & Biotherapeutic Discovery, 2013, Vol.3 (2), p.1-1

ISSN: 2155-983X ;EISSN: 2155-983X ;DOI: 10.4172/2155-983X.1000114

Full text available

Citations Cited by
  • Title:
    How Nanotechnology can Really Improve the Future of Orthopedic Implants and Scaffolds for Bone and Cartilage Defects
  • Author: PD, Parchi
  • Subjects: Biocompatibility
  • Is Part Of: Journal of Nanomedicine & Biotherapeutic Discovery, 2013, Vol.3 (2), p.1-1
  • Description: The osteointegration of the orthopaedic implants could improve the biocompatibility and the life span of the implants. The ideal implants should be made by materials easily colonized by bone-forming cells (osteoblasts), which can synthesize new bone matrix. Some implant materials are not often compatible with osteoblasts, but rather they promote the formation of softconnective tissue. There are a number of important reasons to explore the potential for the application of nanomaterials in orthopedic surgery. The use of nanotechnology has been tested on a wide range of materials (such as metals, ceramics, polymers, and composites), where either nanostructured surface features or constituent nanomaterials (including grains, fibers, or particles with at least one dimension from 1 to 100 nm) have been utilized. These nanomaterials have demonstrated superior properties compared with their conventional (or micron structured) counterparts, due to their distinctive nanoscale features and the novel physical properties that ensue. Aim of this paper is to explore how nanotechnology can really improve the future of orthopedic implants and scaffolds for bone and cartilage defects. Here we are showing the most relevant works about the use of nanotechnologies for the treatment of osteocondral defects.
  • Language: English
  • Identifier: ISSN: 2155-983X
    EISSN: 2155-983X
    DOI: 10.4172/2155-983X.1000114
  • Source: Alma/SFX Local Collection

Searching Remote Databases, Please Wait