skip to main content
Language:
Search Limited to: Search Limited to: Resource type Show Results with: Show Results with: Search type Index

A Core Flood and Microfluidics Investigation of Nanocellulose as a Chemical Additive to Water Flooding for EOR

Nanomaterials (Basel, Switzerland), 2020-07, Vol.10 (7), p.1296 [Peer Reviewed Journal]

2020 by the authors. 2020 ;ISSN: 2079-4991 ;EISSN: 2079-4991 ;DOI: 10.3390/nano10071296 ;PMID: 32630280

Full text available

Citations Cited by
  • Title:
    A Core Flood and Microfluidics Investigation of Nanocellulose as a Chemical Additive to Water Flooding for EOR
  • Author: Aadland, Reidun C. ; Akarri, Salem ; Heggset, Ellinor B. ; Syverud, Kristin ; Torsæter, Ole
  • Subjects: Cellulose nanocrystals ; Chemical flooding ; Enhanced oil recovery ; Microfluidics ; Nanocellulose ; TEMPO-oxidized cellulose nanofibrils
  • Is Part Of: Nanomaterials (Basel, Switzerland), 2020-07, Vol.10 (7), p.1296
  • Description: Cellulose nanocrystals (CNCs) and 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidized cellulose nanofibrils (T-CNFs) were tested as enhanced oil recovery (EOR) agents through core floods and microfluidic experiments. Both particles were mixed with low salinity water (LSW). The core floods were grouped into three parts based on the research objectives. In Part 1, secondary core flood using CNCs was compared to regular water flooding at fixed conditions, by reusing the same core plug to maintain the same pore structure. CNCs produced 5.8% of original oil in place (OOIP) more oil than LSW. For Part 2, the effect of injection scheme, temperature, and rock wettability was investigated using CNCs. The same trend was observed for the secondary floods, with CNCs performing better than their parallel experiment using LSW. Furthermore, the particles seemed to perform better under mixed-wet conditions. Additional oil (2.9–15.7% of OOIP) was produced when CNCs were injected as a tertiary EOR agent, with more incremental oil produced at high temperature. In the final part, the effect of particle type was studied. T-CNFs produced significantly more oil compared to CNCs. However, the injection of T-CNF particles resulted in a steep increase in pressure, which never stabilized. Furthermore, a filter cake was observed at the core face after the experiment was completed. Microfluidic experiments showed that both T-CNF and CNC nanofluids led to a better sweep efficiency compared to low salinity water flooding. T-CNF particles showed the ability to enhance the oil recovery by breaking up events and reducing the trapping efficiency of the porous medium. A higher flow rate resulted in lower oil recovery factors and higher remaining oil connectivity. Contact angle and interfacial tension measurements were conducted to understand the oil recovery mechanisms. CNCs altered the interfacial tension the most, while T-CNFs had the largest effect on the contact angle. However, the changes were not significant enough for them to be considered primary EOR mechanisms.
  • Publisher: MDPI
  • Language: English
  • Identifier: ISSN: 2079-4991
    EISSN: 2079-4991
    DOI: 10.3390/nano10071296
    PMID: 32630280
  • Source: PubMed Central
    SWEPUB Freely available online
    ROAD: Directory of Open Access Scholarly Resources
    ProQuest Central
    DOAJ Directory of Open Access Journals

Searching Remote Databases, Please Wait