skip to main content
Language:
Search Limited to: Search Limited to: Resource type Show Results with: Show Results with: Search type Index

Consequences of Urban Stability Conditions for Computational Fluid Dynamics Simulations of Urban Dispersion

Journal of applied meteorology and climatology, 2007-07, Vol.46 (7), p.1080-1097 [Peer Reviewed Journal]

2007 American Meteorological Society ;2007 INIST-CNRS ;ISSN: 1558-8424 ;EISSN: 1558-8432 ;DOI: 10.1175/jam2514.1 ;CODEN: JOAMEZ

Full text available

Citations Cited by
  • Title:
    Consequences of Urban Stability Conditions for Computational Fluid Dynamics Simulations of Urban Dispersion
  • Author: Lundquist, Julie K. ; Chan, Stevens T.
  • Subjects: Analysis methods ; Applied sciences ; Atmospheric pollution ; Budgets ; Buoyancy ; Central business districts ; Computer platforms ; Downtowns ; Emergency preparedness ; Exact sciences and technology ; Fluid dynamics ; Industrial accidents ; Meteorology ; Metropolitan areas ; Modeling ; Parameterization ; Pollutants physicochemistry study: properties, effects, reactions, transport and distribution ; Pollution ; Studies ; Turbulence ; Turbulence models ; Ultraviolet radiation ; Urban areas ; Velocity ; Wind ; Wind direction ; Wind velocity
  • Is Part Of: Journal of applied meteorology and climatology, 2007-07, Vol.46 (7), p.1080-1097
  • Description: The validity of omitting stability considerations when simulating transport and dispersion in the urban environment is explored using observations from the Joint Urban 2003 field experiment and computational fluid dynamics simulations of that experiment. Four releases of sulfur hexafluoride, during two daytime and two nighttime intensive observing periods (IOPs), are simulated using the building-resolving computational fluid dynamics model called the Finite Element Model in 3-Dimensions and Massively Parallelized (FEM3MP) to solve the Reynolds-averaged Navier–Stokes equations with two options of turbulence parameterizations. One option omits stability effects but has a superior turbulence parameterization using a nonlinear eddy viscosity (NEV) approach, and the other considers buoyancy effects with a simple linear eddy viscosity approach for turbulence parameterization. Model performance metrics are calculated by comparison with observed winds and tracer data in the downtown area and with observed winds and turbulence kinetic energy (TKE) profiles at a location immediately downwind of the central business district in the area labeled as the urban shadow. Model predictions of winds, concentrations, profiles of wind speed, wind direction, and friction velocity are generally consistent with and compare reasonably well to the field observations. Simulations using the NEV turbulence parameterization generally exhibit better agreement with observations. To explore further the assumption of a neutrally stable atmosphere within the urban area, TKE budget profiles slightly downwind of the urban wake region in the urban shadow are examined. Dissipation and shear production are the largest terms that may be calculated directly. The advection of TKE is calculated as a residual; as would be expected downwind of an urban area, the advection of TKE produced within the urban area is a very large term. Buoyancy effects may be neglected in favor of advection, shear production, and dissipation. For three of the IOPs, buoyancy production may be neglected entirely; for one IOP, buoyancy production contributes approximately 25% of the total TKE at this location. For both nighttime releases, the contribution of buoyancy to the total TKE budget is always negligible though positive. Results from the simulations provide estimates of the average TKE values in the upwind, downtown, downtown shadow, and urban wake zones of the computational domain. These values suggest that building-induced turbulence can cause the average turbulence intensity in the urban area to increase by as much as 7 times average upwind values, explaining the minimal role of buoyant forcing in the downtown region. The downtown shadow exhibits an exponential decay in average TKE, whereas the distant downwind wake region approaches the average upwind values. For long-duration releases in downtown and downtown shadow areas, the assumption of neutral stability is valid because building-induced turbulence dominates the budget. However, farther downwind in the urban wake region, which is found to be approximately 1500 m beyond the perimeter of downtown Oklahoma City, Oklahoma, the levels of building-induced turbulence greatly subside, and therefore the assumption of neutral stability is less valid.
  • Publisher: Boston, MA: American Meteorological Society
  • Language: English
  • Identifier: ISSN: 1558-8424
    EISSN: 1558-8432
    DOI: 10.1175/jam2514.1
    CODEN: JOAMEZ
  • Source: Alma/SFX Local Collection
    ProQuest Central

Searching Remote Databases, Please Wait