skip to main content
Language:
Search Limited to: Search Limited to: Resource type Show Results with: Show Results with: Search type Index

Robust paper-based materials for efficient oil–water emulsion separation

Cellulose (London), 2021-11, Vol.28 (16), p.10565-10578 [Peer Reviewed Journal]

The Author(s), under exclusive licence to Springer Nature B.V. 2021 ;The Author(s), under exclusive licence to Springer Nature B.V. 2021. ;ISSN: 0969-0239 ;EISSN: 1572-882X ;DOI: 10.1007/s10570-021-04165-2

Full text available

Citations Cited by
  • Title:
    Robust paper-based materials for efficient oil–water emulsion separation
  • Author: Xi, Jianfeng ; Lou, Yanling ; Jiang, Shan ; Fang, Guigan ; Wu, Weibing
  • Subjects: Bioorganic Chemistry ; Cellulose fibers ; Ceramics ; Chemistry ; Chemistry and Materials Science ; Composites ; Contact angle ; Crosslinking ; Fibrillation ; Glass ; Interception ; Liquid bridges ; Low cost ; Membranes ; Natural Materials ; Organic Chemistry ; Original Research ; Papermaking ; Physical Chemistry ; Polymer Sciences ; Pore size ; Separation ; Sheets ; Sustainable Development ; Underwater ; Wastewater treatment ; Wet strength
  • Is Part Of: Cellulose (London), 2021-11, Vol.28 (16), p.10565-10578
  • Description: Developing a feasible and efficient separation membrane for the purification of emulsified oily wastewater is challenging due to the critical limitations of serious fouling during membrane preparation. Herein, underwater superoleophobic paper-based materials with high wet strength were prepared by low cost and green papermaking technology. The fibrillation of cellulose fibers was achieved by beating to optimize the pore structure of paper sheets. Simple modification of paper sheets with 1,2,3,4-butanetetracarboxylic acid significantly improves the surface hydrophilicity and the wet strength through the crosslinking reaction between fibers. The maximum underwater oil contact angle and wet strength of the modified paper sheets are high up to 167.8°and 36.5 N·m/g, respectively. The water flux can be adjusted in the range of 25.8 L m −2  h −1 –4920 L m −2  h −1 by controlling the average pore size from 6.64 μm to 18.9 μm. Lower pore size and higher carboxyl content of the paper-based materials are beneficial to improve the oil rejection, which can reach more than 99.3% even for submicron emulsified oils. Most of the paper sheets achieve efficient oil–water separation although the average pore size is remarkably larger than the emulsified oil droplet. The reason can be attributed to the zigzag pore structure of paper sheets, which is favorable to form liquid bridge on the surface as well as collision demulsification in the Z-direction channel, thereby promoting the mechanical interception effects. The low-cost, eco-friendly, easily-manufactured and highly efficient paper-based separation materials possess wide applications in oily wastewater treatment.
  • Publisher: Dordrecht: Springer Netherlands
  • Language: English
  • Identifier: ISSN: 0969-0239
    EISSN: 1572-882X
    DOI: 10.1007/s10570-021-04165-2
  • Source: ProQuest Central

Searching Remote Databases, Please Wait