skip to main content
Language:
Search Limited to: Search Limited to: Resource type Show Results with: Show Results with: Search type Index

Adaptive-illumination STED nanoscopy

Proceedings of the National Academy of Sciences - PNAS, 2017-09, Vol.114 (37), p.9797-9802 [Peer Reviewed Journal]

Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles ;Copyright National Academy of Sciences Sep 12, 2017 ;ISSN: 0027-8424 ;EISSN: 1091-6490 ;DOI: 10.1073/pnas.1708304114 ;PMID: 28847959

Full text available

Citations Cited by
  • Title:
    Adaptive-illumination STED nanoscopy
  • Author: Heine, Jörn ; Reuss, Matthias ; Harke, Benjamin ; D’Este, Elisa ; Sahl, Steffen J. ; Hell, Stefan W.
  • Subjects: Biological Sciences ; Bleaching ; Chemical compounds ; Diffraction ; Fluorescence ; Fluorophores ; Light ; Light intensity ; Luminous intensity ; Microscopy ; Molecular structure ; Photobleaching ; Physical Sciences ; Studies ; Switching
  • Is Part Of: Proceedings of the National Academy of Sciences - PNAS, 2017-09, Vol.114 (37), p.9797-9802
  • Description: The concepts called STED/RESOLFT superresolve features by a light-driven transfer of closely packed molecules between two different states, typically a nonfluorescent “off” state and a fluorescent “on” state at well-defined coordinates on subdiffraction scales. For this, the applied light intensity must be sufficient to guarantee the state difference for molecules spaced at the resolution sought. Relatively high intensities have therefore been applied throughout the imaging to obtain the highest resolutions. At regions where features are far enough apart that molecules could be separated with lower intensity, the excess intensity just adds to photobleaching. Here, we introduce DyMIN (standing for Dynamic Intensity Minimum) scanning, generalizing and expanding on earlier concepts of RESCue and MINFIELD to reduce sample exposure. The principle of DyMIN is that it only uses as much on/off-switching light as needed to image at the desired resolution. Fluorescence can be recorded at those positions where fluorophores are found within a subresolution neighborhood. By tuning the intensity (and thus resolution) during the acquisition of each pixel/voxel, we match the size of this neighborhood to the structures being imaged. DyMIN is shown to lower the dose of STED light on the scanned region up to ∼20-fold under common biological imaging conditions, and >100-fold for sparser 2D and 3D samples. The bleaching reduction can be converted into accordingly brighter images at <30-nm resolution.
  • Publisher: United States: National Academy of Sciences
  • Language: English
  • Identifier: ISSN: 0027-8424
    EISSN: 1091-6490
    DOI: 10.1073/pnas.1708304114
    PMID: 28847959
  • Source: Geneva Foundation Free Medical Journals at publisher websites
    PubMed Central

Searching Remote Databases, Please Wait