skip to main content
Language:
Search Limited to: Search Limited to: Resource type Show Results with: Show Results with: Search type Index

Extracellular Hsp90a stimulates a unique innate gene profile in microglial cells with simultaneous activation of Nrf2 and protection from oxidative stress

Cell stress & chaperones, 2022-09, Vol.27 (5), p.461-483 [Peer Reviewed Journal]

ISSN: 1355-8145 ;EISSN: 1466-1268

Full text available

Citations Cited by
  • Title:
    Extracellular Hsp90a stimulates a unique innate gene profile in microglial cells with simultaneous activation of Nrf2 and protection from oxidative stress
  • Author: Okusha, Yuka ; Lang, Benjamin J. ; Murshid, Ayesha ; Borges, Thiago J. ; Holton, Kristina M. ; Clark-Matott, Joanne ; Doshi, Sachin ; Ikezu, Tsuneya ; Calderwood, Stuart K.
  • Subjects: ORIGINAL ARTICLE
  • Is Part Of: Cell stress & chaperones, 2022-09, Vol.27 (5), p.461-483
  • Description: Delivery of exogenous heat shock protein 90α (Hsp90α) and/or its induced expression in neural tissues has been suggested as a potential strategy to combat neurodegenerative disease. However, within a neurodegenerative context, a pro-inflammatory response to extracellular Hsp90α (eHsp90α) could undermine strategies to use it for therapeutic intervention. The aim of this study was to investigate the biological effects of eHsp90α on microglial cells, the primary mediators of inflammatory responses in the brain. Transcriptomic profiling by RNA-seq of primary microglia and the cultured EOC2 microglial cell line treated with eHsp90α showed the chaperone to stimulate activation of innate immune responses in microglia that were characterized by an increase in NF-kB-regulated genes. Further characterization showed this response to be substantially lower in amplitude than the effects of other inflammatory stimuli such as fibrillar amyloid-β (fAβ) or lipopolysaccharide (LPS). Additionally, the toxicity of conditioned media obtained from microglia treated with fAβ was attenuated by addition of eHsp90α. Using a co-culture system of microglia and hippocampal neuronal cell line HT22 cells separated by a chamber insert, the neurotoxicity of medium conditioned by microglia treated with fAβ was reduced when eHsp90α was also added. Mechanistically, eHsp90α was shown to activate Nrf2, a response which attenuated fAβ-induced nitric oxide production. The data thus suggested that eHsp90α protects against fAβ-induced oxidative stress. We also report eHsp90a to induce expression of macrophage receptor with collagenous structure (Marco), which would permit receptor-mediated endocytosis of fAβ.
  • Publisher: Springer Science + Business Media
  • Language: English
  • Identifier: ISSN: 1355-8145
    EISSN: 1466-1268
  • Source: Geneva Foundation Free Medical Journals at publisher websites
    PubMed Central
    ProQuest Central

Searching Remote Databases, Please Wait