skip to main content
Language:
Search Limited to: Search Limited to: Resource type Show Results with: Show Results with: Search type Index

An End-to-End Reliability Framework of the Internet of Things

Sensors (Basel, Switzerland), 2020-04, Vol.20 (9), p.2439 [Peer Reviewed Journal]

2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. ;2020 by the authors. 2020 ;ISSN: 1424-8220 ;EISSN: 1424-8220 ;DOI: 10.3390/s20092439 ;PMID: 32344803

Full text available

Citations Cited by
  • Title:
    An End-to-End Reliability Framework of the Internet of Things
  • Author: Azghiou, Kamal ; El Mouhib, Manal ; Koulali, Mohammed-Amine ; Benali, Abdelhamid
  • Subjects: Automation ; availability ; Block diagrams ; Cloud computing ; Computer architecture ; Decision making ; End-to-End IoT reliability architecture ; failure process ; Flow charts ; Heterogeneity ; Internet of Things ; Interoperability ; Investigations ; IoT ; Mathematical models ; Network reliability ; Numerical analysis ; Random variables ; reliability ; Reliability analysis ; reliability block diagram ; Reliability engineering ; Smart grid ; Software ; Standardization ; Subsystems ; System reliability ; System theory ; Wireless sensor networks
  • Is Part Of: Sensors (Basel, Switzerland), 2020-04, Vol.20 (9), p.2439
  • Description: The Internet of Things (IoT) paradigm feeds from many scientific and engineering fields. This involves a diversity and heterogeneity of its underlying systems. When considering End-to-End IoT systems, we can identify the emergence of new classes of problems. The best-known ones are those associated to standardization for better interoperability and compatibility of those systems, and those who gave birth of new paradigms like that of Fog Computing. Predicting the reliability of an End-to-End IoT system is a problem belonging to this category. On one hand, predicting reliability can be mandatory, most times, before the deployment stage. On another hand, it may help engineers at the design and the operational stages to establish effective maintenance policies and may provide the various stakeholders and decision-makers a means to take the relevant actions. We can find in the literature works which consider only fragments of End-to-End IoT systems such as those assessing reliability for Wireless Sensors Networks (WSN) or Cloud subsystems, to cite just a few. Some other works are specific to well-defined industries, like those targeting reliability study of E-health and Smart-Grid infrastructures. Works that aims to assess reliability for an End-to-End IoT system are remarkably rare and particularly restrained in terms of expressiveness, flexibility, and in their implementation time complexity. In this paper, we apply the Reliability Block Diagram (RBD) paradigm to set up a framework for End-to-End IoT system reliability modeling and analysis. Our contribution is four-fold: we propose an IoT network-based layered architecture, we model in depth each layer of the proposed architecture, we suggest a flow chart to deploy the proposed framework, and we perform a numerical investigation of simplified scenarios. We affirm that the proposed framework is expressive, flexible, and scalable. The numerical study reveals mission time intervals which characterize the behavior of an IoT system from the point of view of its reliability.
  • Publisher: Switzerland: MDPI AG
  • Language: English
  • Identifier: ISSN: 1424-8220
    EISSN: 1424-8220
    DOI: 10.3390/s20092439
    PMID: 32344803
  • Source: GFMER Free Medical Journals
    PubMed Central
    ROAD: Directory of Open Access Scholarly Resources
    ProQuest Central
    DOAJ Directory of Open Access Journals

Searching Remote Databases, Please Wait