skip to main content
Language:
Search Limited to: Search Limited to: Resource type Show Results with: Show Results with: Search type Index

Biomimetic, Highly Reusable and Hydrophobic Graphene/Polyvinyl Alcohol/Cellulose Nanofiber Aerogels as Oil-Removing Absorbents

Polymers, 2022-03, Vol.14 (6), p.1077 [Peer Reviewed Journal]

2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. ;2022 by the authors. 2022 ;ISSN: 2073-4360 ;EISSN: 2073-4360 ;DOI: 10.3390/polym14061077 ;PMID: 35335408

Full text available

Citations Cited by
  • Title:
    Biomimetic, Highly Reusable and Hydrophobic Graphene/Polyvinyl Alcohol/Cellulose Nanofiber Aerogels as Oil-Removing Absorbents
  • Author: Feng, Peiyuan ; Wang, Xiwen ; Yang, Jin
  • Subjects: Absorption ; aerogel ; Aerogels ; bidirectional freezing ; biomimetic structure ; Biomimetics ; Cellulose ; Cellulose fibers ; Chemical vapor deposition ; Compressibility ; Contact angle ; Fourier transforms ; Freezing ; Graphene ; Hydrophobicity ; Mechanical properties ; Nanofibers ; oil absorption ; Oil recovery ; Polyvinyl alcohol ; recyclability ; Spectrum analysis ; Synergistic effect
  • Is Part Of: Polymers, 2022-03, Vol.14 (6), p.1077
  • Description: Aerogels have great potential in oil absorption applications; however, many reported aerogels have the drawbacks of a low oil-recovery rate and poor mechanical properties, which limit their application. In this study, highly reusable graphene oxide (GO)/TEMPO-oxidized cellulose nanofiber (TOCN)/polyvinyl alcohol (PVA) aerogels with excellent mechanical properties and with an architecture similar to that of stems were fabricated through a three-step process of bidirectional-freezing, freeze-drying, and chemical vapor deposition (CVD) modification. After CVD modification, the modified GTPA (MGTPA) accorded hydrophobicity. The synergistic effects of the three components and the unique biomimetic structure conferred biomimetic-MGTPA (b-MGTPA) with excellent compressible properties. As an adsorbent, b-MGTPA showed a high adsorption capacity (75-151 g/g) for various types of organic solvents. In addition, its high compressibility enables b-MGTPA to have fast and highly efficient recovery of absorbed oil through simple mechanical squeezing and it possesses excellent reusable stability (the oil recovery rate and oil retention rate reached 80% and 91.5%, respectively, after 10 repeated absorption-compression cycles).
  • Publisher: Switzerland: MDPI AG
  • Language: English
  • Identifier: ISSN: 2073-4360
    EISSN: 2073-4360
    DOI: 10.3390/polym14061077
    PMID: 35335408
  • Source: GFMER Free Medical Journals
    PubMed Central
    ROAD: Directory of Open Access Scholarly Resources
    ProQuest Central
    DOAJ Directory of Open Access Journals

Searching Remote Databases, Please Wait