skip to main content
Language:
Search Limited to: Search Limited to: Resource type Show Results with: Show Results with: Search type Index

Comparing neuronal oscillations during visual spatial attention orienting between normobaric and hypobaric hypoxia

Scientific reports, 2023-10, Vol.13 (1), p.18021-18021, Article 18021 [Peer Reviewed Journal]

The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. ;Springer Nature Limited 2023 ;ISSN: 2045-2322 ;EISSN: 2045-2322 ;DOI: 10.1038/s41598-023-45308-8 ;PMID: 37865721

Full text available

Citations Cited by
  • Title:
    Comparing neuronal oscillations during visual spatial attention orienting between normobaric and hypobaric hypoxia
  • Author: Hutcheon, Evan A ; Vakorin, Vasily A ; Nunes, Adonay S ; Ribary, Urs ; Ferguson, Sherri ; Claydon, Victoria E ; Doesburg, Sam M
  • Subjects: Attention task ; Blood pressure ; Cognitive ability ; EEG ; Hypoxia ; Information processing ; Oscillations ; Oxygen ; Visual perception
  • Is Part Of: Scientific reports, 2023-10, Vol.13 (1), p.18021-18021, Article 18021
  • Description: Abstract Normobaric hypoxia (NH) and hypobaric hypoxia (HH) are both used to train aircraft pilots to recognize symptoms of hypoxia. NH (low oxygen concentration) training is often preferred because it is more cost effective, simpler, and safer than HH. It is unclear, however, whether NH is neurophysiologically equivalent to HH (high altitude). Previous studies have shown that neural oscillations, particularly those in the alpha band (8–12 Hz), are impacted by hypoxia. Attention tasks have been shown to reliably modulate alpha oscillations, although the neurophysiological impacts of hypoxia during cognitive processing remains poorly understood. To address this we investigated induced and evoked power alongside physiological data while participants performed an attention task during control (normobaric normoxia or NN), NH (fraction of inspired oxygen = 12.8%, partial pressure of inspired oxygen = 87.2 mmHg), and HH (3962 m, partial pressure of inspired oxygen = 87.2 mmHg) conditions inside a hypobaric chamber. No significant differences between NH and HH were found in oxygen saturation, end tidal gases, breathing rate, middle cerebral artery velocity and blood pressure. Induced alpha power was significantly decreased in NH and HH when compared to NN. Participants in the HH condition showed significantly increased induced lower-beta power and evoked higher-beta power, compared with the NH and NN conditions, indicating that NH and HH differ in their impact on neurophysiological activity supporting cognition. NH and HH were found not to be neurophysiologically equivalent as electroencephalography was able to differentiate NH from HH.
  • Publisher: London: Nature Publishing Group
  • Language: English
  • Identifier: ISSN: 2045-2322
    EISSN: 2045-2322
    DOI: 10.1038/s41598-023-45308-8
    PMID: 37865721
  • Source: PubMed Central
    ProQuest Central
    DOAJ Directory of Open Access Journals

Searching Remote Databases, Please Wait