skip to main content
Language:
Search Limited to: Search Limited to: Resource type Show Results with: Show Results with: Search type Index

Hazardous metal additives in plastics and their environmental impacts

Environment international, 2021-11, Vol.156, p.106622-106622, Article 106622 [Peer Reviewed Journal]

2021 The Authors ;ISSN: 0160-4120 ;EISSN: 1873-6750 ;DOI: 10.1016/j.envint.2021.106622

Full text available

Citations Cited by
  • Title:
    Hazardous metal additives in plastics and their environmental impacts
  • Author: Turner, Andrew ; Filella, Montserrat
  • Subjects: Environmental impacts ; Hazardous additives ; Metals ; Plastics ; Recycling ; Regulations
  • Is Part Of: Environment international, 2021-11, Vol.156, p.106622-106622, Article 106622
  • Description: [Display omitted] •We review the addition, recycling and regulation of hazardous metals in plastics.•Hazardous metals occur widely in plastics in societal circulation and lost in nature.•Metal diffusion from the matrix is the main health and environmental concern.•Historical metal additives pose a greater risk than metals acquired from the environment. Historically, many additives and catalysts used in plastics were based on compounds of toxic metals (and metalloids), like arsenic, cadmium, chromium(VI), and lead. Despite subsequent restrictions, hazardous additives remain in plastics in societal circulation because of the pervasiveness of many products and the more general contamination of recycled goods. However, little is understood about their presence and impacts in the environment, with most studies focusing on the role of plastics in acquiring metals from their surroundings through, for example, adsorption. Accordingly, this paper provides a review of the uses of hazardous, metal-based additives in plastics, the relevant European regulations that have been introduced to restrict or prohibit usage in various sectors, and the likely environmental impacts of hazardous additives once plastics are lost in nature. Examination of the literature reveals widespread occurrence of hazardous metals in environmental plastics, with impacts ranging from contamination of the waste stream to increasing the density and settling rates of material in aquatic systems. A potential concern from an ecotoxicological perspective is the diffusion of metals from the matrix of micro- and nanoplastics under certain physico-chemical conditions, and especially favorable here are the acidic environments encountered in the digestive tract of many animals (birds, fish, mammals) that inadvertently consume plastics. For instance, in vitro studies have shown that the mobilization of Cd and Pb from historical microplastics can greatly exceed concentrations deemed to be safe according to migration limits specified by the current European Toy Safety Directive (17 mg kg−1 and 23 mg kg−1, respectively). When compared with concentrations of metals typically adsorbed to plastics from the environment, the risks from pervasive, historical additives are far more significant.
  • Publisher: Elsevier Ltd
  • Language: English
  • Identifier: ISSN: 0160-4120
    EISSN: 1873-6750
    DOI: 10.1016/j.envint.2021.106622
  • Source: DOAJ Directory of Open Access Journals

Searching Remote Databases, Please Wait