skip to main content
Language:
Search Limited to: Search Limited to: Resource type Show Results with: Show Results with: Search type Index

Plasma microRNA signature associated with retinopathy in patients with type 2 diabetes

Scientific reports, 2021-02, Vol.11 (1), p.4136-4136, Article 4136 [Peer Reviewed Journal]

The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. ;The Author(s) 2021 ;ISSN: 2045-2322 ;EISSN: 2045-2322 ;DOI: 10.1038/s41598-021-83047-w ;PMID: 33602976

Full text available

Citations Cited by
  • Title:
    Plasma microRNA signature associated with retinopathy in patients with type 2 diabetes
  • Author: Santovito, Donato ; Toto, Lisa ; De Nardis, Velia ; Marcantonio, Pamela ; D'Aloisio, Rossella ; Mastropasqua, Alessandra ; De Cesare, Domenico ; Bucci, Marco ; Paganelli, Camilla ; Natarelli, Lucia ; Weber, Christian ; Consoli, Agostino ; Mastropasqua, Rodolfo ; Cipollone, Francesco
  • Subjects: Biomarkers ; Blood vessels ; Diabetes ; Diabetes mellitus (non-insulin dependent) ; Diabetic retinopathy ; Gene expression ; MicroRNAs ; miRNA ; Post-transcription ; Retinopathy
  • Is Part Of: Scientific reports, 2021-02, Vol.11 (1), p.4136-4136, Article 4136
  • Description: Diabetic retinopathy (DR) is a leading cause of vision loss and disability. Effective management of DR depends on prompt treatment and would benefit from biomarkers for screening and pre-symptomatic detection of retinopathy in diabetic patients. MicroRNAs (miRNAs) are post-transcriptional regulators of gene expression which are released in the bloodstream and may serve as biomarkers. Little is known on circulating miRNAs in patients with type 2 diabetes (T2DM) and DR. Here we show that DR is associated with higher circulating miR-25-3p (P = 0.004) and miR-320b (P = 0.011) and lower levels of miR-495-3p (P < 0.001) in a cohort of patients with T2DM with DR (n = 20), compared with diabetic subjects without DR (n = 10) and healthy individuals (n = 10). These associations persisted significant after adjustment for age, gender, and HbA1c. The circulating levels of these miRNAs correlated with severity of the disease and their concomitant evaluation showed high accuracy for identifying DR (AUROC = 0.93; P < 0.001). Gene ontology analysis of validated targets revealed enrichment in pathways such as regulation of metabolic process (P = 1.5 × 10 ), of cell response to stress (P = 1.9 × 10 ), and development of blood vessels (P = 2.7 × 10 ). Pending external validation, we anticipate that these miRNAs may serve as putative disease biomarkers and highlight novel molecular targets for improving care of patients with diabetic retinopathy.
  • Publisher: England: Nature Publishing Group
  • Language: English
  • Identifier: ISSN: 2045-2322
    EISSN: 2045-2322
    DOI: 10.1038/s41598-021-83047-w
    PMID: 33602976
  • Source: Open Access: PubMed Central
    ProQuest Central
    DOAJ Directory of Open Access Journals

Searching Remote Databases, Please Wait