skip to main content
Guest
My Research
My Account
Sign out
Sign in
This feature requires javascript
Library Search
Find Databases
Browse Search
E-Journals A-Z
E-Books A-Z
Citation Linker
Help
Language:
English
Vietnamese
This feature required javascript
This feature requires javascript
Primo Search
All Library Resources
All
Course Materials
Course Materials
Search For:
Clear Search Box
Search in:
All Library Resources
Or hit Enter to replace search target
Or select another collection:
Search in:
All Library Resources
Search in:
Print Resources
Search in:
Digital Resources
Search in:
Online E-Resources
Advanced Search
Browse Search
This feature requires javascript
Search Limited to:
Search Limited to:
Resource type
criteria input
All items
Books
Articles
Images
Audio Visual
Maps
Graduate theses
Show Results with:
criteria input
that contain my query words
with my exact phrase
starts with
Show Results with:
Search type Index
criteria input
anywhere in the record
in the title
as author/creator
in subject
Full Text
ISBN
ISSN
TOC
Keyword
Field
Show Results with:
in the title
Show Results with:
anywhere in the record
in the title
as author/creator
in subject
Full Text
ISBN
ISSN
TOC
Keyword
Field
This feature requires javascript
Object-Based Mangrove Species Classification Using Unmanned Aerial Vehicle Hyperspectral Images and Digital Surface Models
Remote sensing (Basel, Switzerland), 2018-01, Vol.10 (2), p.89
[Peer Reviewed Journal]
ISSN: 2072-4292 ;EISSN: 2072-4292 ;DOI: 10.3390/rs10010089
Full text available
Citations
Cited by
View Online
Details
Recommendations
Reviews
Times Cited
External Links
This feature requires javascript
Actions
Add to My Research
Remove from My Research
E-mail
Print
Permalink
Citation
EasyBib
EndNote
RefWorks
Delicious
Export RIS
Export BibTeX
This feature requires javascript
Title:
Object-Based Mangrove Species Classification Using Unmanned Aerial Vehicle Hyperspectral Images and Digital Surface Models
Author:
Cao, Jingjing
;
Leng, Wanchun
;
Liu, Kai
;
Liu, Lin
;
He, Zhi
;
Zhu, Yuanhui
Subjects:
n/a
Is Part Of:
Remote sensing (Basel, Switzerland), 2018-01, Vol.10 (2), p.89
Description:
Mangroves are one of the most important coastal wetland ecosystems, and the compositions and distributions of mangrove species are essential for conservation and restoration efforts. Many studies have explored this topic using remote sensing images that were obtained by satellite-borne and airborne sensors, which are known to be efficient for monitoring the mangrove ecosystem. With improvements in carrier platforms and sensor technology, unmanned aerial vehicles (UAVs) with high-resolution hyperspectral images in both spectral and spatial domains have been used to monitor crops, forests, and other landscapes of interest. This study aims to classify mangrove species on Qi’ao Island using object-based image analysis techniques based on UAV hyperspectral images obtained from a commercial hyperspectral imaging sensor (UHD 185) onboard a UAV platform. First, the image objects were obtained by segmenting the UAV hyperspectral image and the UAV-derived digital surface model (DSM) data. Second, spectral features, textural features, and vegetation indices (VIs) were extracted from the UAV hyperspectral image, and the UAV-derived DSM data were used to extract height information. Third, the classification and regression tree (CART) method was used to selection bands, and the correlation-based feature selection (CFS) algorithm was employed for feature reduction. Finally, the objects were classified into different mangrove species and other land covers based on their spectral and spatial characteristic differences. The classification results showed that when considering the three features (spectral features, textural features, and hyperspectral VIs), the overall classification accuracies of the two classifiers used in this paper, i.e., k-nearest neighbor (KNN) and support vector machine (SVM), were 76.12% (Kappa = 0.73) and 82.39% (Kappa = 0.801), respectively. After incorporating tree height into the classification features, the accuracy of species classification increased, and the overall classification accuracies of KNN and SVM reached 82.09% (Kappa = 0.797) and 88.66% (Kappa = 0.871), respectively. It is clear that SVM outperformed KNN for mangrove species classification. These results also suggest that height information is effective for discriminating mangrove species with similar spectral signatures, but different heights. In addition, the classification accuracy and performance of SVM can be further improved by feature reduction. The overall results provided evidence for the effectiveness and potential of UAV hyperspectral data for mangrove species identification.
Publisher:
MDPI AG
Language:
English
Identifier:
ISSN: 2072-4292
EISSN: 2072-4292
DOI: 10.3390/rs10010089
Source:
DOAJ Directory of Open Access Journals
ROAD: Directory of Open Access Scholarly Resources
ProQuest Central
This feature requires javascript
This feature requires javascript
Back to results list
This feature requires javascript
This feature requires javascript
Searching Remote Databases, Please Wait
Searching for
in
scope:(TDTS),scope:(SFX),scope:(TDT),scope:(SEN),primo_central_multiple_fe
Show me what you have so far
This feature requires javascript
This feature requires javascript