skip to main content
Language:
Search Limited to: Search Limited to: Resource type Show Results with: Show Results with: Search type Index

Landslide Susceptibility Prediction Based on Remote Sensing Images and GIS: Comparisons of Supervised and Unsupervised Machine Learning Models

Remote sensing (Basel, Switzerland), 2020-02, Vol.12 (3), p.502 [Peer Reviewed Journal]

ISSN: 2072-4292 ;EISSN: 2072-4292 ;DOI: 10.3390/rs12030502

Full text available

Citations Cited by
  • Title:
    Landslide Susceptibility Prediction Based on Remote Sensing Images and GIS: Comparisons of Supervised and Unsupervised Machine Learning Models
  • Author: Chang, Zhilu ; Du, Zhen ; Zhang, Fan ; Huang, Faming ; Chen, Jiawu ; Li, Wenbin ; Guo, Zizheng
  • Subjects: geographic information system ; landslide susceptibility prediction ; remote sensing ; supervised machine learning ; unsupervised machine learning
  • Is Part Of: Remote sensing (Basel, Switzerland), 2020-02, Vol.12 (3), p.502
  • Description: Landslide susceptibility prediction (LSP) has been widely and effectively implemented by machine learning (ML) models based on remote sensing (RS) images and Geographic Information System (GIS). However, comparisons of the applications of ML models for LSP from the perspectives of supervised machine learning (SML) and unsupervised machine learning (USML) have not been explored. Hence, this study aims to compare the LSP performance of these SML and USML models, thus further to explore the advantages and disadvantages of these ML models and to realize a more accurate and reliable LSP result. Two representative SML models (support vector machine (SVM) and CHi-squared Automatic Interaction Detection (CHAID)) and two representative USML models (K-means and Kohonen models) are respectively used to scientifically predict the landslide susceptibility indexes, and then these prediction results are discussed. Ningdu County with 446 recorded landslides obtained through field investigations is introduced as case study. A total of 12 conditioning factors are obtained through procession of Landsat TM 8 images and high-resolution aerial images, topographical and hydrological spatial analysis of Digital Elevation Modeling in GIS software, and government reports. The area value under the curve of receiver operating features (AUC) is applied for evaluating the prediction accuracy of SML models, and the frequency ratio (FR) accuracy is then introduced to compare the remarkable prediction performance differences between SML and USML models. Overall, the receiver operation curve (ROC) results show that the AUC of the SVM is 0.892 and is slightly greater than the AUC of the CHAID model (0.872). The FR accuracy results show that the SVM model has the highest accuracy for LSP (77.80%), followed by the CHAID model (74.50%), the Kohonen model (72.8%) and the K-means model (69.7%), which indicates that the SML models can reach considerably better prediction capability than the USML models. It can be concluded that selecting recorded landslides as prior knowledge to train and test the LSP models is the key reason for the higher prediction accuracy of the SML models, while the lack of a priori knowledge and target guidance is an important reason for the low LSP accuracy of the USML models. Nevertheless, the USML models can also be used to implement LSP due to their advantages of efficient modeling processes, dimensionality reduction and strong scalability.
  • Publisher: MDPI AG
  • Language: English
  • Identifier: ISSN: 2072-4292
    EISSN: 2072-4292
    DOI: 10.3390/rs12030502
  • Source: DOAJ Directory of Open Access Journals
    ROAD: Directory of Open Access Scholarly Resources
    ProQuest Central

Searching Remote Databases, Please Wait