skip to main content
Guest
My Research
My Account
Sign out
Sign in
This feature requires javascript
Library Search
Find Databases
Browse Search
E-Journals A-Z
E-Books A-Z
Citation Linker
Help
Language:
English
Vietnamese
This feature required javascript
This feature requires javascript
Primo Search
All Library Resources
All
Course Materials
Course Materials
Search For:
Clear Search Box
Search in:
All Library Resources
Or hit Enter to replace search target
Or select another collection:
Search in:
All Library Resources
Search in:
Print Resources
Search in:
Digital Resources
Search in:
Online E-Resources
Advanced Search
Browse Search
This feature requires javascript
Search Limited to:
Search Limited to:
Resource type
criteria input
All items
Books
Articles
Images
Audio Visual
Maps
Graduate theses
Show Results with:
criteria input
that contain my query words
with my exact phrase
starts with
Show Results with:
Search type Index
criteria input
anywhere in the record
in the title
as author/creator
in subject
Full Text
ISBN
ISSN
TOC
Keyword
Field
Show Results with:
in the title
Show Results with:
anywhere in the record
in the title
as author/creator
in subject
Full Text
ISBN
ISSN
TOC
Keyword
Field
This feature requires javascript
Land-Use Land-Cover Classification by Machine Learning Classifiers for Satellite Observations—A Review
Remote sensing (Basel, Switzerland), 2020-04, Vol.12 (7), p.1135
[Peer Reviewed Journal]
ISSN: 2072-4292 ;EISSN: 2072-4292 ;DOI: 10.3390/rs12071135
Full text available
Citations
Cited by
View Online
Details
Recommendations
Reviews
Times Cited
External Links
This feature requires javascript
Actions
Add to My Research
Remove from My Research
E-mail
Print
Permalink
Citation
EasyBib
EndNote
RefWorks
Delicious
Export RIS
Export BibTeX
This feature requires javascript
Title:
Land-Use Land-Cover Classification by Machine Learning Classifiers for Satellite Observations—A Review
Author:
Talukdar, Swapan
;
Singha, Pankaj
;
Mahato, Susanta
;
Shahfahad
;
Pal, Swades
;
Liou, Yuei-An
;
Rahman, Atiqur
Subjects:
artificial neural network
;
Earth observations
;
land use/land cover (LULC)
;
machine learning algorithm
;
random forest
Is Part Of:
Remote sensing (Basel, Switzerland), 2020-04, Vol.12 (7), p.1135
Description:
Rapid and uncontrolled population growth along with economic and industrial development, especially in developing countries during the late twentieth and early twenty-first centuries, have increased the rate of land-use/land-cover (LULC) change many times. Since quantitative assessment of changes in LULC is one of the most efficient means to understand and manage the land transformation, there is a need to examine the accuracy of different algorithms for LULC mapping in order to identify the best classifier for further applications of earth observations. In this article, six machine-learning algorithms, namely random forest (RF), support vector machine (SVM), artificial neural network (ANN), fuzzy adaptive resonance theory-supervised predictive mapping (Fuzzy ARTMAP), spectral angle mapper (SAM) and Mahalanobis distance (MD) were examined. Accuracy assessment was performed by using Kappa coefficient, receiver operational curve (RoC), index-based validation and root mean square error (RMSE). Results of Kappa coefficient show that all the classifiers have a similar accuracy level with minor variation, but the RF algorithm has the highest accuracy of 0.89 and the MD algorithm (parametric classifier) has the least accuracy of 0.82. In addition, the index-based LULC and visual cross-validation show that the RF algorithm (correlations between RF and normalised differentiation water index, normalised differentiation vegetation index and normalised differentiation built-up index are 0.96, 0.99 and 1, respectively, at 0.05 level of significance) has the highest accuracy level in comparison to the other classifiers adopted. Findings from the literature also proved that ANN and RF algorithms are the best LULC classifiers, although a non-parametric classifier like SAM (Kappa coefficient 0.84; area under curve (AUC) 0.85) has a better and consistent accuracy level than the other machine-learning algorithms. Finally, this review concludes that the RF algorithm is the best machine-learning LULC classifier, among the six examined algorithms although it is necessary to further test the RF algorithm in different morphoclimatic conditions in the future.
Publisher:
MDPI AG
Language:
English
Identifier:
ISSN: 2072-4292
EISSN: 2072-4292
DOI: 10.3390/rs12071135
Source:
ROAD
Directory of Open Access Journals
ProQuest Central
This feature requires javascript
This feature requires javascript
Back to results list
This feature requires javascript
This feature requires javascript