skip to main content
Guest
My Research
My Account
Sign out
Sign in
This feature requires javascript
Library Search
Find Databases
Browse Search
E-Journals A-Z
E-Books A-Z
Citation Linker
Help
Language:
English
Vietnamese
This feature required javascript
This feature requires javascript
Primo Search
All Library Resources
All
Course Materials
Course Materials
Search For:
Clear Search Box
Search in:
All Library Resources
Or hit Enter to replace search target
Or select another collection:
Search in:
All Library Resources
Search in:
Print Resources
Search in:
Digital Resources
Search in:
Online E-Resources
Advanced Search
Browse Search
This feature requires javascript
Search Limited to:
Search Limited to:
Resource type
criteria input
All items
Books
Articles
Images
Audio Visual
Maps
Graduate theses
Show Results with:
criteria input
that contain my query words
with my exact phrase
starts with
Show Results with:
Search type Index
criteria input
anywhere in the record
in the title
as author/creator
in subject
Full Text
ISBN
ISSN
TOC
Keyword
Field
Show Results with:
in the title
Show Results with:
anywhere in the record
in the title
as author/creator
in subject
Full Text
ISBN
ISSN
TOC
Keyword
Field
This feature requires javascript
Building Extraction in Very High Resolution Remote Sensing Imagery Using Deep Learning and Guided Filters
Remote sensing (Basel, Switzerland), 2018-01, Vol.10 (1), p.144
[Peer Reviewed Journal]
ISSN: 2072-4292 ;EISSN: 2072-4292 ;DOI: 10.3390/rs10010144
Full text available
Citations
Cited by
View Online
Details
Recommendations
Reviews
Times Cited
External Links
This feature requires javascript
Actions
Add to My Research
Remove from My Research
E-mail
Print
Permalink
Citation
EasyBib
EndNote
RefWorks
Delicious
Export RIS
Export BibTeX
This feature requires javascript
Title:
Building Extraction in Very High Resolution Remote Sensing Imagery Using Deep Learning and Guided Filters
Author:
Xu, Yongyang
;
Wu, Liang
;
Xie, Zhong
;
Chen, Zhanlong
Subjects:
building extraction
;
deep learning
;
guided filter
;
very high resolution
Is Part Of:
Remote sensing (Basel, Switzerland), 2018-01, Vol.10 (1), p.144
Description:
Very high resolution (VHR) remote sensing imagery has been used for land cover classification, and it tends to a transition from land-use classification to pixel-level semantic segmentation. Inspired by the recent success of deep learning and the filter method in computer vision, this work provides a segmentation model, which designs an image segmentation neural network based on the deep residual networks and uses a guided filter to extract buildings in remote sensing imagery. Our method includes the following steps: first, the VHR remote sensing imagery is preprocessed and some hand-crafted features are calculated. Second, a designed deep network architecture is trained with the urban district remote sensing image to extract buildings at the pixel level. Third, a guided filter is employed to optimize the classification map produced by deep learning; at the same time, some salt-and-pepper noise is removed. Experimental results based on the Vaihingen and Potsdam datasets demonstrate that our method, which benefits from neural networks and guided filtering, achieves a higher overall accuracy when compared with other machine learning and deep learning methods. The method proposed shows outstanding performance in terms of the building extraction from diversified objects in the urban district.
Publisher:
MDPI AG
Language:
English
Identifier:
ISSN: 2072-4292
EISSN: 2072-4292
DOI: 10.3390/rs10010144
Source:
DOAJ Directory of Open Access Journals
ROAD: Directory of Open Access Scholarly Resources
ProQuest Central
This feature requires javascript
This feature requires javascript
Back to results list
This feature requires javascript
This feature requires javascript
Searching Remote Databases, Please Wait
Searching for
in
scope:(TDTS),scope:(SFX),scope:(TDT),scope:(SEN),primo_central_multiple_fe
Show me what you have so far
This feature requires javascript
This feature requires javascript