skip to main content
Guest
My Research
My Account
Sign out
Sign in
This feature requires javascript
Library Search
Find Databases
Browse Search
E-Journals A-Z
E-Books A-Z
Citation Linker
Help
Language:
English
Vietnamese
This feature required javascript
This feature requires javascript
Primo Search
All Library Resources
All
Course Materials
Course Materials
Search For:
Clear Search Box
Search in:
All Library Resources
Or hit Enter to replace search target
Or select another collection:
Search in:
All Library Resources
Search in:
Print Resources
Search in:
Digital Resources
Search in:
Online E-Resources
Advanced Search
Browse Search
This feature requires javascript
Search Limited to:
Search Limited to:
Resource type
criteria input
All items
Books
Articles
Images
Audio Visual
Maps
Graduate theses
Show Results with:
criteria input
that contain my query words
with my exact phrase
starts with
Show Results with:
Search type Index
criteria input
anywhere in the record
in the title
as author/creator
in subject
Full Text
ISBN
ISSN
TOC
Keyword
Field
Show Results with:
in the title
Show Results with:
anywhere in the record
in the title
as author/creator
in subject
Full Text
ISBN
ISSN
TOC
Keyword
Field
This feature requires javascript
Sentinel-2 Data for Land Cover/Use Mapping: A Review
Remote sensing (Basel, Switzerland), 2020-07, Vol.12 (14), p.2291
[Peer Reviewed Journal]
ISSN: 2072-4292 ;EISSN: 2072-4292 ;DOI: 10.3390/rs12142291
Full text available
Citations
Cited by
View Online
Details
Recommendations
Reviews
Times Cited
External Links
This feature requires javascript
Actions
Add to My Research
Remove from My Research
E-mail
Print
Permalink
Citation
EasyBib
EndNote
RefWorks
Delicious
Export RIS
Export BibTeX
This feature requires javascript
Title:
Sentinel-2 Data for Land Cover/Use Mapping: A Review
Author:
Phiri, Darius
;
Simwanda, Matamyo
;
Salekin, Serajis
;
Nyirenda, Vincent
;
Murayama, Yuji
;
Ranagalage, Manjula
Subjects:
classification
;
ESA
;
land cover/use
;
remote sensing
;
Sentinel-2
Is Part Of:
Remote sensing (Basel, Switzerland), 2020-07, Vol.12 (14), p.2291
Description:
The advancement in satellite remote sensing technology has revolutionised the approaches to monitoring the Earth’s surface. The development of the Copernicus Programme by the European Space Agency (ESA) and the European Union (EU) has contributed to the effective monitoring of the Earth’s surface by producing the Sentinel-2 multispectral products. Sentinel-2 satellites are the second constellation of the ESA Sentinel missions and carry onboard multispectral scanners. The primary objective of the Sentinel-2 mission is to provide high resolution satellite data for land cover/use monitoring, climate change and disaster monitoring, as well as complementing the other satellite missions such as Landsat. Since the launch of Sentinel-2 multispectral instruments in 2015, there have been many studies on land cover/use classification which use Sentinel-2 images. However, no review studies have been dedicated to the application of ESA Sentinel-2 land cover/use monitoring. Therefore, this review focuses on two aspects: (1) assessing the contribution of ESA Sentinel-2 to land cover/use classification, and (2) exploring the performance of Sentinel-2 data in different applications (e.g., forest, urban area and natural hazard monitoring). The present review shows that Sentinel-2 has a positive impact on land cover/use monitoring, specifically in monitoring of crop, forests, urban areas, and water resources. The contemporary high adoption and application of Sentinel-2 can be attributed to the higher spatial resolution (10 m) than other medium spatial resolution images, the high temporal resolution of 5 days and the availability of the red-edge bands with multiple applications. The ability to integrate Sentinel-2 data with other remotely sensed data, as part of data analysis, improves the overall accuracy (OA) when working with Sentinel-2 images. The free access policy drives the increasing use of Sentinel-2 data, especially in developing countries where financial resources for the acquisition of remotely sensed data are limited. The literature also shows that the use of Sentinel-2 data produces high accuracies (>80%) with machine-learning classifiers such as support vector machine (SVM) and Random forest (RF). However, other classifiers such as maximum likelihood analysis are also common. Although Sentinel-2 offers many opportunities for land cover/use classification, there are challenges which include mismatching with Landsat OLI-8 data, a lack of thermal bands, and the differences in spatial resolution among the bands of Sentinel-2. Sentinel-2 data show promise and have the potential to contribute significantly towards land cover/use monitoring.
Publisher:
MDPI AG
Language:
English
Identifier:
ISSN: 2072-4292
EISSN: 2072-4292
DOI: 10.3390/rs12142291
Source:
ROAD: Directory of Open Access Scholarly Resources
ProQuest Central
DOAJ Directory of Open Access Journals
This feature requires javascript
This feature requires javascript
Back to results list
This feature requires javascript
This feature requires javascript
Searching Remote Databases, Please Wait
Searching for
in
scope:(TDTS),scope:(SFX),scope:(TDT),scope:(SEN),primo_central_multiple_fe
Show me what you have so far
This feature requires javascript
This feature requires javascript