skip to main content
Language:
Search Limited to: Search Limited to: Resource type Show Results with: Show Results with: Search type Index

BEYOND GROUND CONTROL POINTS: COST-EFFECTIVE 3D BUILDING RECONSTRUCTION THROUGH GNSS-INTEGRATED PHOTOGRAMMETRY

International archives of the photogrammetry, remote sensing and spatial information sciences., 2024, Vol.XLVIII-2/W4-2024, p.333-339 [Peer Reviewed Journal]

2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. ;ISSN: 1682-1750 ;EISSN: 2194-9034 ;DOI: 10.5194/isprs-archives-XLVIII-2-W4-2024-333-2024

Full text available

Citations Cited by
  • Title:
    BEYOND GROUND CONTROL POINTS: COST-EFFECTIVE 3D BUILDING RECONSTRUCTION THROUGH GNSS-INTEGRATED PHOTOGRAMMETRY
  • Author: Oniga, E ; Boroianu, B ; Morelli, L ; Remondino, F ; Macovei, M
  • Subjects: Accuracy ; Aerial photography ; Ground based control ; Helical antennas ; Image acquisition ; Image reconstruction ; Laser applications ; Lasers ; Photogrammetry ; Three dimensional models ; Unmanned aerial vehicles
  • Is Part Of: International archives of the photogrammetry, remote sensing and spatial information sciences., 2024, Vol.XLVIII-2/W4-2024, p.333-339
  • Description: The process of 3D building modeling serves a multitude of practical and strategic purposes across diverse industries. Building a 3D model involves employing a range of techniques and technologies. Among these, the most used methods include 3D laser scanning and photogrammetry, whether applied at close-range or through the use of Unmanned Aerial Systems (UAS). In photogrammetry, ground control points (GCPs) are generally needed to scale and georeference the digital reconstruction process, but it is a timeconsuming practice or sometimes impractical or dangerous. This paper aims to evaluate the efficiency of two integrated devices to perform photogrammetric 3D reconstruction without GCPs. They are both composed by a Sony ZV1 camera coupled with two different RTK/PPK GNSS system: the Emlid Reach RS2 GNSS receiver and the Emlid Reach M2 module with a multi-band GNSS helical antenna. Different sets of images were acquired with the two proposed devices for the lever-arm estimation and to perform the 3D surveying of the Galata monastery historical monument. The accuracy of the process and derived dense point clouds is assessed by comparing them with GCPs and a reference point cloud derived by fusing an UAS and a high-resolution mobile laser scanning point cloud. The ultimate goal is to obtain a 3D building model without the use of GCPs in the process of bundle block adjustment with centimeter accuracy.
  • Publisher: Gottingen: Copernicus GmbH
  • Language: English
  • Identifier: ISSN: 1682-1750
    EISSN: 2194-9034
    DOI: 10.5194/isprs-archives-XLVIII-2-W4-2024-333-2024
  • Source: ProQuest Central
    DOAJ Directory of Open Access Journals

Searching Remote Databases, Please Wait